Dynamic Rolling-Walk by Isotropic Robot Design

New dynamic rolling-walk motion for multi-legged robot with Sensory Compensation is proposed. The motion is realized by using the isotropic leg arrangement and the dynamic center of mass control inspired by bipedal robots. By using the Preview Control of Zero Moment Point with cart-table model based on the bipedal robot technique, the robot’s center of mass trajectory is planned for the dynamic motion. The Resolved Momentum Control for manipulating the multi-links robot as a single mass model is also implemented in the system to maintain stability of the robot. In the new dynamic rolling-walk motion, the robot switches between two legs supporting and three legs supporting phases with the Preview Control of Zero Moment Point and Resolved Momentum Control as dynamic motion controllers and Gyro sensor for error compensation to achieve the motion. We analyzed the motion and confirmed the feasibility in the Open Dynamic Engine before implementing the motion in an actual robot.